

Corrosion in Underground Storage Tanks (USTs) Storing Diesel

Summary, Findings, and Impacts of EPA's July 2016 Research

Why Research Corrosion in USTs Storing Diesel?

- Reports began around 2007
- Internal metal components (often STP shaft)
- Severe and rapid onset

- Unidentified cause
- Extent not fully understood **before this research, or after**
- Appearance different and impacts more severe than corrosion in sump spaces of USTs storing gasoline/ethanol blends

Key points from the research

- Research showed corrosion in most USTs studied. Owners may not be aware it is affecting their UST system
- Corrosion may impact equipment functionality in a couple of ways, and could pose a risk of release of fuel to the environment
- Metal components in steel and fiberglass tanks

Investigation of Corrosion-Influencing Factors - Released July 2016

Research Goals:

- To better understand the extent of the problem and identify potential risks
- Identify any correlations or predictive factors among UST systems with severe or minimal corrosion

Timeline of Research and Review Process:

- Field and lab work completed spring 2015
- **Stakeholder review** of initial draft summer 2015
- **Peer-review** winter 2015-16

Investigation Locations and Tank Population

Diverse UST Sample Population

Many locations

- 42 sites
- 24 fiberglass, 16 steel, 2 steel coated
- 8 of 10 have steel and fiberglass in cluster

8 different owners

- Government, retail, fleet
- Single and multiple site
- Large range of fuel throughputs and suppliers

Diverse USTs

- 1 29 years in service
- 5,000 to 20,000 gallons in capacity
- Different product storage histories
- Various approaches to maintenance

Data Collection on UST Conditions

Collect

Vapor Fuel

samples:

Water bottom

Inspect with internal tank video

ULSD Site Inspection Field Form 🛛 🞜 Tanknology							
Site Name/ID#:					Date:		
Address:					Time:		
City:	ST:		Zip:		Technician:		
Contact:	Phone:				Signature:		
Tank and Piping Information and History							
Tank Identifier	Pro	duct: ULS	SD.				
How Water Monitored?	ATG or Stick						
Tank Capacity (gals)			Tank Diameter	r (in ches):			
Tank Material			Single/Do	uble Wall			
Tank Year of Installation							
Tank/Piping Manifolded?							
Over fill protection (type and observation)*							
STP Mak e/Model	•					□ РНОТО	
STP Shaft Condition*	Minimal (<5%)	or Mode	rate (5% to 5	0%) or:	Severe (>50%	6) 🗆 VIDEO	
Riser Entry for Video:							
Observations	Fill Pipe		ATG		STP	Other	
Ris er Condition	□ РНОТО		□ PHOTO		□ РНОТО	□ РНОТО	
Cap/Adapter Condition	□ PHOTO		□ PHOTO		□ РНОТО	□ РНОТО	
Other Visible Corrosion?							
Product Level*							
Water Bottom Level							
Dispenser Info	Dsp #	Dsp #		Dsp #		Dsp #	

Collect information on

maintenance, throughput, fuel supply, biocide use, etc.

Fuel Analysis Methods	Method Identifier	Determination of			
Water in Petroleum Products, Lubricating Oils, and Additives by Coulometric Karl Fischer Titration (Procedure B)	ASTM D6304ª	Water Content			
	ASTM D4052 ²⁰ Density				
Acid Number of Petroleum Products by Potentiometric Titration	ASTM D66411	Total Acid Number			
Determining Corrosive Properties of Cargoes in Petroleum Product Pipelines	NACE TM-172 12		Water		
Particulate Contamination in Middle Distillate Fuels by Laboratory Filtration	ASTM D621713	Particulates	Water Bottom Analysis Methods	Method Identifier	Determination of
Determination of Biodiesel (FAME) Content in Diesel Fuel Oil Using Mid Infrared Spectroscopy (FITR-ATR-PLS Method)	ASTMD7371 ¹⁴⁴	Biodiesel Content	Ion Chromatography (IC) for short chain	Modified EPA 300	Acetic, Formic,
Flash Point by Pensky-Martens Closed Cup	ASTM D93 ¹⁶	Flashpoint	any actus		Propionic, Lactic Acids
Determination of Free and Total Glycerinin Biodiesel Blends by Anion Exchange	ASTMD7591 ¹⁶	Free and Total Givcerin	IC Test for Free Glycerin	Lab In-House Method	Glycerin
Chromatography GC-MS Full Scan	Lab In-House Method	Unknowns of Interest		ASTM D6919 ²⁹	Cations (Sodum, Caloum, Magnesium, Potassium, Ammonium) and Anions (Chloride, Sulfate, Nitrate and Fluoride)
Determination of Total Sulfur in Light Hydrocarbons, Spark Ignition Engine Fuel, Diesel Engine Fuel, and Engine Oil by Ultraviolet Fluorescence	ASTM D5453 ¹²	Sulfur Content	Water and Wastewater by Ion Chromatography		
Electrical Conductivity of Aviation and Distillate Fuels	ASTMD262418	Conductivity	pH (Electric)	EPA 150.1 ⁻²⁰	рН
Determination of Short Chain Fatty Acids by Gas Chromatography-Mass Spectrometry (GC-MS)	Lab In-House Method	Acetate, Formate, Propionate, Lactate, Glycerate		EPA 120.12	Conductivity
			Nonhalogenated Organics Using GC/FID	SW846 8015B-2	Ethanol and Methanol

Sample Analyses

FUEL

VAPOR

Vapor Analysis Methods	Method Identifier	Determination of
Ullage % Relative Humidity	Hygrometer used per manufacturer instructions	% relative humidity
Carboxylic Acids in Ambient Air Using GC-MS	ALS Method 102	Acetic, Formic, Propionic, and Butyric Acids
Determination of	Modified	
Lactic Acid in	NIOSH	Lactic Acid
Ambient Air	7903	

Study Findings

- Corrosion more prevalent than anticipated 83% had moderate or severe corrosion
- Many owners were not aware they had corrosion – sample was biased, but less than 25% initially believed they had corrosion
- No statistically significant predictive factors

Corrosion Prevalence in 42 USTs

Note: EPA asked for sites with corrosion, so sample is biased. But less than 25 percent of the sample population was aware of corrosion before investigation.

Red = steel Brown = Fiberglass (Total Population = 24 fiberglass, 18 steel)

Potential Risks to the Environment – Exposed Metals in the Vapor Space

- Release prevention equipment could corrode and fail to function
 - Corrosion on flapper valves could restrict movement and allow an overfill
 - Product level floats get stuck on corroded shafts and fail to signal a rising product level, fuel release, or water infiltration
 - Ball float valves ball or cage may corrode
 - Line leak detectors could be failing performance testing at higher rates
 - Shear valves may jam

Potential Risks to the Environment (continued)– Bottoms of Tanks

- Metal components could potentially corrode through and possibly release fuel to environment
 - Diesel prone to collect water and sludge in bottom of tanks
 - Study results prompted conversations heard handful of anecdotes of bottom repairs of primary walls of double-wall steel tank bottoms after leak to interstitial sometimes a lack of leak detection alarms but fluid in interstitial space prompted further inspection

Takeaways

- Corrosion of metal components in UST systems storing diesel appears to be common.
- Many owners are likely not aware of corrosion in their diesel UST systems.
- The corrosion is geographically widespread, affects UST systems with steel tanks and with fiberglass tanks, and poses a risk to most internal metal components.
- Ethanol was present in 90 percent of 42 samples, suggesting that cross-contamination of diesel fuel with ethanol is likely the norm, not the exception.

Other Key Takeaways – Continued

- The quality of diesel fuel stored in USTs was mixed.
- Particulates and water content in the fuel were closest to being statistically significant predictive factors for metal corrosion, but causation cannot be discerned.
- MIC could be involved as hypothesized by previous research.
- EPA recommends owners visually inspect USTs storing diesel as part of routine monitoring.

From ASTM D975:

• X6 | MICROBIAL CONTAMINATION

- X6.1 Uncontrolled microbial contamination in fuel systems can cause or contribute to a variety of problems, including increased corrosivity and decreased stability, filterability, and caloric value. Microbial processes in fuel systems can also cause or contribute to system damage.
- X6.2 Because the microbes contributing to the problems listed in X6.1 are not necessarily present in the fuel itself, *no microbial quality criterion for fuels is recommended*. However, it is important that personnel responsible for fuel quality understand how uncontrolled microbial contamination can affect fuel quality.
- X6.3 Guide <u>D6469</u> provides personnel with limited microbiological background an understanding of the symptoms, occurrences, and consequences of microbial contamination. Guide <u>D6469</u> also suggests means for detecting and controlling microbial contamination in fuels and fuel systems. Good housekeeping, especially *keeping fuel dry, is critical*.

Takeaways

- Microbiologically influenced corrosion (MIC) likely largely responsible for the corrosion.
- Eliminating water is recognized as a key factor in preventing this corrosion.
- Unsure about Emergency Generator Tanks and Aboveground Storage Tanks – probably similar corrosion

- Coordinating Research Council (CRC):
 - Report 672 Preventive Maintenance Guide for Diesel Storage and Dispensing Systems (<u>http://www.crcao.org/reports/recentstudies2016/CRC%20672/CRC</u>%20672.pdf)
 - Report 667 Diesel Fuel Storage and Handling Guide (<u>http://www.crcao.org/reports/recentstudies2014/CRC%20667/CRC</u> <u>%20667.pdf</u>)
- Clean Diesel Fuel Alliance: Guidance for Underground Storage Tank Management at ULSD Dispensing Facilities (<u>http://www.clean-</u> <u>diesel.org/pdf/GuidanceforUndergroundStorageTankManagement_FIN</u> <u>AL.pdf</u>)
- Steel Tank Institute R111 Storage Tank Maintenance Standard (http://www.steeltank.com/Portals/0/Shop%20Fab/R111%20%20with% 20updated%20cover.pdf)
- ASTM D6469, Standard Guide for Microbial Contamination in Fuels and Fuel Systems (<u>http://www.astm.org/Standards/D6469.htm</u>) (Note: this document is publicly available but must be purchased)

Additional Information

- EPA Office of Underground Storage Tanks Website
 <u>https://www.epa.gov/ust</u>
- EPA Office of Underground Storage Tanks Emerging Fuels Contact Ryan Haerer at <u>haerer.ryan@epa.gov</u>or

202-564-0762